
‭3.1 PROJECT MANAGEMENT/TRACKING PROCEDURES‬
‭Happy Halloween!‬
‭We decided to adopt an agile methodology to manage our project. There are complex‬
‭components we need to manage with our app. These components include our height detection‬
‭script utilizing a hybrid machine and non-machine learning approach and a mobile app utilizing‬
‭Flutter and Dart FFI. To make development more manageable, we can divide the work into‬
‭agile sprints with smaller goals so we are not trying to tackle the entire project at once. This will‬
‭improve our understanding of individual project components and will help make a full‬
‭implementation easier in the future. To keep track of our progress, we are utilizing Git issues‬
‭coupled with personal branches for individual development. Having an issues board will help us‬
‭manage what tasks need to be done. Using personal branches will help isolate development so‬
‭we can develop individual components more efficiently without accidentally breaking the main‬
‭branch of the project or having more than one person alter the same file in different ways.‬

‭3.2 TASK DECOMPOSITION‬

‭These tasks are intentionally left broad since we have not made final decisions on the entire‬
‭design. Based on the agile methodology, many of these tasks will be adjusted as development‬
‭continues and we receive feedback from the client. Any testing and prototyping we do could‬
‭also affect our final implementation of these tasks. With this task decomposition, we split the‬
‭project into two major tasks: detecting illegal pitches and developing the mobile application.‬
‭These two tasks pretty much sum up our project but are still broken down further in the image‬
‭above.‬

‭3.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA‬
‭What are some key milestones in your proposed project? It may be helpful to develop these‬
‭milestones for each task and subtask from 3.2. How do you measure progress on a given task?‬

‭These metrics, preferably quantifiable, should be developed for each task. The milestones‬
‭should be stated in terms of these metrics:‬
‭Machine learning algorithm XYZ will classify with 80% accuracy; the pattern recognition logic on‬
‭FPGA will recognize a pattern every 1 ms (at 1K patterns/sec throughput). ML accuracy target‬
‭might go up to 90% from 80%. In an agile development process, these milestones can be‬
‭refined with successive iterations/sprints (perhaps a subset of your requirements applicable to‬
‭those sprint).‬

‭3.4 PROJECT TIMELINE/SCHEDULE‬

‭Above is our proposed AGILE project timeline, featuring a clearly outlined sequential list of‬
‭milestones. Our project has been separated into four parallel-running distinct categories: the‬
‭research category, in which project specific applications and approaches are thoroughly‬
‭assessed and evaluated, the design category, where compiled research is initially primed for‬
‭development, the implement category, where designs created are prototyped and implemented‬
‭into real applications, and the testing category where implementations are tested for their‬
‭correctness and efficiency.‬

‭Following an AGILE methodology, we have separated our project timeline into roughly one-week‬
‭sprints where certain tasks are scheduled for completion. Each bar on the above Gantt chart‬
‭represents a deliverable within an AGILE timeframe set to expire at the bar's end. Holistically,‬
‭the above Gantt chart can be summarized in sprints as follows:‬

‭Timeframe‬ ‭Deliverables‬

‭10/15 - 10/20 (Sprint 1)‬ ‭-‬ ‭Machine learning vs. non-machine‬
‭learning research‬

‭-‬ ‭Mobile application screen sketch‬
‭design‬

‭10/21- 10/27 (Sprint 2)‬ ‭-‬ ‭Flutter app research‬
‭-‬ ‭Object detection prototype‬

‭10/28 - 11/03 (Sprint 3)‬ ‭-‬ ‭Object detection prototype testing‬
‭-‬ ‭Flutter and C++ integration research‬

‭and development‬

‭11/04 -11/10 (Sprint 4)‬ ‭-‬ ‭Implementation of object detection‬
‭within mobile application‬

‭11/11 -11/17 (Sprint 5)‬ ‭-‬ ‭Height calculation research‬
‭-‬ ‭Modular design of full-stack‬

‭application‬
‭-‬ ‭ML model testing‬

‭11/18 -11/24 (Sprint 6)‬ ‭-‬ ‭Height detection prototyping‬

‭11/25 - 12/01 (Sprint 7)‬ ‭-‬ ‭ML model training techniques‬
‭research (model refinement)‬

‭-‬ ‭Full stack application implementation‬

‭12/02 - 12/08 (Sprint 8)‬ ‭-‬ ‭Height detection testing‬

‭12/09 - 12/13 (Sprint 9)‬ ‭-‬ ‭Mobile app integration testing‬

‭3.5 RISKS AND RISK MANAGEMENT/MITIGATION‬
‭For each task, identify all salient risks (certain performance target may not be met; certain tool‬
‭may not work as expected) and assign an educated guess of probability for that risk. For any‬
‭risk factor with a probability exceeding 0.5 and each high severity risk, develop a risk mitigation‬
‭plan. Can you eliminate that task and add another task or set of tasks that might cost more?‬
‭Can you buy something off-the-shelf from the market to achieve that functionality? Can you try‬
‭an alternative tool, technology, algorithm, or board? Agile projects can associate risks and risk‬
‭mitigation with each sprint.‬

‭Sprint 1:‬
‭-‬ ‭Risks‬‭:‬

‭-‬ ‭ML may be overkill for object detection and too resource-intensive. (prob: 0.5)‬
‭-‬ ‭Non-ML methods might lack the needed accuracy. (Prob: 0.6)‬
‭-‬ ‭Mitigation‬‭: Explore using a combination of ML and‬‭non-ML strategies. ML can‬

‭be used to check our non-ML tracking to correct for deviation.‬
‭Sprint 2:‬

‭-‬ ‭Risks‬‭:‬
‭-‬ ‭Flutter’s limitations in handling real-time processing or specific hardware task.‬

‭(Prob: 0.3)‬

‭-‬ ‭Object Detection prototype may not achieve the required performance or‬
‭accuracy. Also may not integrate well with Flutter. (Prob: 0.9)‬

‭-‬ ‭Mitigation‬‭: Rework prototype to use (C++/OpenCV) instead‬‭of Python.‬
‭Sprint 3:‬

‭-‬ ‭Risks‬‭:‬
‭-‬ ‭Compatibility issues with FLutter and C++ integrations, particularly in efficient‬

‭data passing. (Prob: 0.5)‬
‭-‬ ‭Performance drop when integrating object detection into the mobile interface.‬

‭(prob: 0.4)‬
‭-‬ ‭Mitigation‬‭: Use Native Flutter plugins if integration‬‭lags. Test different‬

‭data-handling techniques (i.e. JSON or shared libraries) to see what works best.‬
‭Sprint 4:‬

‭-‬ ‭Risks‬‭:‬
‭-‬ ‭Computing power of mobile devices may limit detection effectiveness. (Prob: 0.6)‬
‭-‬ ‭App design may require significant performance tuning to be responsive. (Prob:‬

‭0.5)‬
‭-‬ ‭Mitigation‬‭: If mobile limitations are severe, explore‬‭using lightweight detection‬

‭models like TensorFlow Lite. Set up performance tests in this sprint to identify‬
‭bottlenecks.‬

‭Sprint 5:‬
‭-‬ ‭Risks‬‭:‬

‭-‬ ‭Height calculations may require a more complex algorithm than anticipated.‬
‭(Prob: 0.5)‬

‭-‬ ‭Modular design complexity might extend timelines. (Prob: 0.4)‬
‭-‬ ‭Mitigation‬‭: Prioritize simple algorithms and add complexity‬‭only as needed.‬

‭Break down modular design into manageable components and integrate one at a‬
‭time.‬

‭Sprint 6:‬
‭-‬ ‭Risks‬‭:‬

‭-‬ ‭Height detection requires more data points or higher resolution. (Prob: 0.5)‬
‭-‬ ‭Prototype might need hardware not accessible or feasible on mobile devices‬

‭(Prob: 0.3)‬
‭-‬ ‭Mitigation‬‭: Consider using simpler relative height‬‭detection if absolute values are‬

‭challenging. Explore OpenCV’s scaling and resolution techniques.‬
‭Sprint 7:‬

‭-‬ ‭Risks‬‭:‬
‭-‬ ‭Model training techniques could require extensive datasets not readily available.‬

‭(Prob: 0.6)‬
‭-‬ ‭Full-stack implementation might increase overhead and limit application speed.‬

‭(Prob: 0.4)‬
‭-‬ ‭Mitigation‬‭: Consider using pre-trained models to limit‬‭the computational needs of‬

‭training a new model.‬

‭Sprint 8:‬
‭-‬ ‭Risks:‬

‭-‬ ‭Detection algorithms may not generalize well across different test conditions.‬
‭(Prob: 0.5)‬

‭-‬ ‭Mitigation‬‭: Run multiple rounds of testing in varied‬‭lighting/angles and adjust‬
‭thresholds. Update algorithms or training data based on observed issues.‬

‭Sprint 9:‬
‭-‬ ‭Risks‬‭:‬

‭-‬ ‭Final app integration may encounter unexpected platform constraints, e.g.,‬
‭compatibility issues on different devices (Prob: 0.5)‬

‭-‬ ‭Mitigation‬‭: Use platform-specific checks to handle‬‭potential discrepancies.‬
‭Testing should include a variety of devices, screen sizes, and operating systems.‬

‭3.6 PERSONNEL EFFORT REQUIREMENTS‬

‭Flutter Development‬
‭-‬ ‭Screen Development‬

‭-‬ ‭The creation of each screen/page of the mobile application.‬
‭-‬ ‭Includes functionality of buttons, page transitions, and user data entry.‬

‭-‬ ‭C++ Integration‬
‭-‬ ‭Connect the frontend display of Flutter to run the backend C++ scripts for‬

‭object/height detection.‬
‭-‬ ‭Must integrate the mobile sensors, cameras, and speakers that are used within‬

‭the C++ scripts using Flutter plugins.‬
‭-‬ ‭Documentation‬

‭-‬ ‭Clear documentation indicating each component within the application’s‬
‭codebase.‬

‭Object Detection Development‬
‭-‬ ‭Python Researching / Prototyping‬

‭-‬ ‭Using OpenCV in Python, design and prototype strategies of data collection and‬
‭identification.‬

‭-‬ ‭Should be a model capable of being tested for accuracy and speed.‬
‭-‬ ‭Testing‬

‭-‬ ‭Test both Python and C++ prototypes to determine if they are appropriate for final‬
‭prototypes.‬

‭-‬ ‭Testing should be done in multiple environments with multiple testing values.‬
‭-‬ ‭Final prototype testing should have a smaller bound for error and more rigorous‬

‭tests.‬
‭-‬ ‭C++ Translation / Build‬

‭-‬ ‭Rewrite the Python object/height detection scripts to function in C++.‬
‭-‬ ‭Create a CMake project to be built in a mobile application.‬

‭-‬ ‭Documentation‬
‭-‬ ‭Write descriptions and identifications for each class and working component‬

‭within the Python and C++ files for easy readability and professionalism.‬

‭3.7 OTHER RESOURCE REQUIREMENTS‬
‭Identify the other resources aside from financial (such as parts and materials) required to‬
‭complete the project.‬

‭Physical Resources:‬
‭-‬ ‭Phone (Android or iOS)‬

‭Software Resources:‬
‭-‬ ‭Flutter Framework‬
‭-‬ ‭OpenCV Library‬
‭-‬ ‭YOLO or other Object Detection Model‬

